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NOTICE

The following two-volume report is intended solely as guidance to EPA and other
environmental professionals. This document does not constitute rulemaking by the Agency, and
cannot be relied on to create a substantive or procedural right enforceable by any party in
litigation with the United States. EPA may take action that is at variance with the information,
policies, and procedures in this document and may change them at any time without public notice.

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government.



FOREWORD

Understanding the long-term behavior of contaminants in the subsurface is becoming
increasingly more important as the nation addresses groundwater contamination. Groundwater
contamination is a national concern as about 50 percent of the United States population receives
its drinking water from groundwater. It is the goal of the Environmental Protection Agency
(EPA) to prevent adverse effects to human health and the environment and to protect the
environmental integrity of the nation’s groundwater.

Once groundwater is contaminated, it is important to understand how the contaminant
moves in the subsurface environment. Proper understanding of the contaminant fate and transport
is necessary in order to characterize the risks associated with the contamination and to develop,
when necessary, emergency or remedial action plans. The parameter known as the partition (or
distribution) coefficient (K,) is one of the most important parameters used in estimating the
migration potential of contaminants present in aqueous solutions in contact with surface,
subsurface and suspended solids.

This two-volume report describes: (1) the conceptualization, measurement, and use of the
partition coefficient parameter; and (2) the geochemical agueous solution and sorbent properties
that are most important in controlling adsorption/retardation behavior of selected contaminants.
Volume | of this document focuses on providing EPA and other environmental remediation
professionals with a reasoned and documented discussion of the major issues related to the
selection and measurement of the partition coefficient for a select group of contaminants. The
selected contaminants investigated in this two-volume document include: chromium, cadmium,
cesium, lead, plutonium, radon, strontium, thorium, tritium (*H), and uranium. This two-volume
report also addresses a void that has existed on this subject in both this Agency and in the user
community.

It isimportant to note that soil scientists and geochemists knowledgeable of sorption
processes in natural environments have long known that generic or default partition coefficient
values found in the literature can result in significant errors when used to predict the absolute
impacts of contaminant migration or site-remediation options. Accordingly, one of the maor
recommendations of this report is that for site-specific calculations, partition coefficient values
measured at site-specific conditions are absolutely essential.

For those cases when the partition coefficient parameter is not or cannot be measured,
Volume Il of this document: (1) provides a“thumb-nail sketch” of the key geochemical processes
affecting the sorption of the selected contaminants; (2) provides references to related key
experimental and review articles for further reading; (3) identifies the important agueous- and
solid-phase parameters controlling the sorption of these contaminants in the subsurface
environment under oxidizing conditions; and (4) identifies, when possible, minimum and
maximum conservative partition coefficient values for each contaminant as a function of the key
geochemical processes affecting their sorption.



This publication is the result of a cooperative effort between the EPA Office of Radiation
and Indoor Air, Office of Solid Waste and Emergency Response, and the Department of Energy
Office of Environmental Restoration (EM-40). In addition, this publication is produced as part of
ORIA’slong-term strategic plan to assist in the remediation of contaminated sites. It is published
and made available to assist al environmental remediation professionals in the cleanup of
groundwater sources all over the United States.

Stephen D. Page, Director
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ABSTRACT

This two-volume report describes the conceptualization, measurement, and use of the partition (or
distribution) coefficient, K, parameter, and the geochemical aqueous solution and sorbent
properties that are most important in controlling adsorption/retardation behavior of selected
contaminants. The report is provided for technical staff from EPA and other organizations who
are responsible for prioritizing site remediation and waste management decisions. Volume |
discusses the technical issues associated with the measurement of K, valuesand itsusein
formulating the retardation factor, R;. The K, concept and methods for measurement of K, values
arediscussed in detail in Volume |. Particular attention is directed at providing an understanding
of: (1) the use of K, valuesin formulating R;, (2) the difference between the original
thermodynamic K, parameter derived from ion-exchange literature and its “empiricized” usein
contaminant transport codes, and (3) the explicit and implicit assumptions underlying the use of
the K, parameter in contaminant transport codes. A conceptual overview of chemical reaction
models and their use in addressing technical defensibility issues associated with data from K
studiesis presented. The capabilities of EPA’s geochemical reaction model MINTEQAZ2 and its
different conceptual adsorption models are also reviewed. Volume Il provides a“thumb-nail
sketch” of the key geochemical processes affecting the sorption of selected inorganic
contaminants, and a summary of K, values given in the literature for these contaminants under
oxidizing conditions. The contaminants chosen for the first phase of this project include
chromium, cadmium, cesium, lead, plutonium, radon, strontium, thorium, tritium (°*H), and
uranium. Important agqueous speciation, (co)preci pitation/dissolution, and adsorption reactions
are discussed for each contaminant. References to related key experimental and review articles
for further reading are aso listed.
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